126 research outputs found

    One-way quantum computation via manipulation of polarization and momentum qubits in two-photon cluster states

    Full text link
    Four-qubit cluster states of two photons entangled in polarization and linear momentum have been used to realize a complete set of single qubit rotations and the C-NOT gate for equatorial qubits with high values of fidelity. By the computational equivalence of the two degrees of freedom our result demonstrate the suitability of two photon cluster states for rapid and efficient one-way quantum computing.Comment: RevTex4, 4 pages, 3 figure

    Engineering integrated pure narrow-band photon sources

    Full text link
    Engineering and controlling well defined states of light for quantum information applications is of increasing importance as the complexity of quantum systems grows. For example, in quantum networks high multi-photon interference visibility requires properly devised single mode sources. In this paper we propose a spontaneous parametric down conversion source based on an integrated cavity-waveguide, where single narrow-band, possibly distinct, spectral modes for the idler and the signal fields can be generated. This mode selection takes advantage of the clustering effect, due to the intrinsic dispersion of the nonlinear material. In combination with a CW laser and fast detection, our approach provides a means to engineer a source that can efficiently generate pure photons, without filtering, that is compatible with long distance quantum communication. Furthermore, it is extremely flexible and could easily be adapted to a wide variety of wavelengths and applications.Comment: 13 pages, 7 figure

    meV resolution in laser-assisted energy-filtered transmission electron microscopy

    Full text link
    The electronic, optical, and magnetic properties of quantum solids are determined by their low-energy (< 100 meV) many-body excitations. Dynamical characterization and manipulation of such excitations relies on tools that combine nm-spatial, fs-temporal, and meV-spectral resolution. Currently, phonons and collective plasmon resonances can be imaged in nanostructures with sub-nm and 10s meV space/energy resolution using state-of-the-art energy-filtered transmission electron microscopy (TEM), but only under static conditions, while fs-resolved measurements are common but lack spatial or energy resolution. Here, we demonstrate a new method of spectrally resolved photon-induced near-field electron microscopy (SRPINEM) that allows us to obtain nm-fs-resolved maps of nanoparticle plasmons with an energy resolution determined by the laser linewidth (20 meV in this work), and not limited by electron beam and spectrometer energy spreading. This technique can be extended to any optically-accessible low-energy mode, thus pushing TEM to a previously inaccessible spectral domain with an unprecedented combination of space, energy and temporal resolution.Comment: 19 pages, 7 figure

    Applications of quantum cloning

    Get PDF
    Quantum Cloning Machines (QCMs) allow for the copying of information, within the limits imposed by quantum mechanics. These devices are particularly interesting in the high-gain regime, i.e., when one input qubit generates a state of many output qubits. In this regime, they allow for the study of certain aspects of the quantum to classical transition. The understanding of these aspects is the root of the two recent applications that we will review in this paper: the first one is the Quantum Cloning Radiometer, a device which is able to produce an absolute measure of spectral radiance. This device exploits the fact that in the quantum regime information can be copied with only finite fidelity, whereas when a state becomes macroscopic, this fidelity gradually increases to 1. Measuring the fidelity of the cloning operation then allows to precisely determine the absolute spectral radiance of the input optical source. We will then discuss whether a Quantum Cloning Machine could be used to produce a state visible by the naked human eye, and the possibility of a Bell Experiment with humans playing the role of detector

    Enhanced electron-phonon coupling in graphene with periodically distorted lattice

    Get PDF
    Electron-phonon coupling directly determines the stability of cooperative order in solids, including superconductivity, charge and spin density waves. Therefore, the ability to enhance or reduce electron-phonon coupling by optical driving may open up new possibilities to steer materials' functionalities, potentially at high speeds. Here we explore the response of bilayer graphene to dynamical modulation of the lattice, achieved by driving optically-active in-plane bond stretching vibrations with femtosecond mid-infrared pulses. The driven state is studied by two different ultrafast spectroscopic techniques. Firstly, TeraHertz time-domain spectroscopy reveals that the Drude scattering rate decreases upon driving. Secondly, the relaxation rate of hot quasi-particles, as measured by time- and angle-resolved photoemission spectroscopy, increases. These two independent observations are quantitatively consistent with one another and can be explained by a transient three-fold enhancement of the electron-phonon coupling constant. The findings reported here provide useful perspective for related experiments, which reported the enhancement of superconductivity in alkali-doped fullerites when a similar phonon mode was driven.Comment: 12 pages, 4 figure

    A versatile source of polarisation entangled photons for quantum network applications

    Get PDF
    We report a versatile and practical approach for generating high-quality polarization entanglement in a fully guided-wave fashion. Our setup relies on a high-brilliance type-0 waveguide generator producing paired photon at a telecom wavelength associated with an advanced energy-time to polarisation transcriber. The latter is capable of creating any pure polarization entangled state, and allows manipulating single photon bandwidths that can be chosen at will over five orders of magnitude, ranging from tens of MHz to several THz. We achieve excellent entanglement fidelities for particular spectral bandwidths, i.e. 25 MHz, 540 MHz and 100 GHz, proving the relevance of our approach. Our scheme stands as an ideal candidate for a wide range of network applications, ranging from dense division multiplexing quantum key distribution to heralded optical quantum memories and repeaters.Comment: 5 figure

    From attosecond to zeptosecond coherent control of free-electron wave functions using semi-infinite light fields

    Get PDF
    Light-electron interaction in empty space is the seminal ingredient for free-electron lasers and also for controlling electron beams to dynamically investigate materials and molecules. Pushing the coherent control of free electrons by light to unexplored timescales, below the attosecond, would enable unprecedented applications in light-assisted electron quantum circuits and diagnostics at extremely small timescales, such as those governing intramolecular electronic motion and nuclear phenomena. We experimentally demonstrate attosecond coherent manipulation of the electron wave function in a transmission electron microscope, and show that it can be pushed down to the zeptosecond regime with existing technology. We make a relativistic pulsed electron beam interact in free space with an appropriately synthesized semi-infinite light field generated by two femtosecond laser pulses reflected at the surface of a mirror and delayed by fractions of the optical cycle. The amplitude and phase of the resulting coherent oscillations of the electron states in energymomentum space are mapped via momentum-resolved ultrafast electron energy-loss spectroscopy. The experimental results are in full agreement with our theoretical framework for light-electron interaction, which predicts access to the zeptosecond timescale by combining semi-infinite X-ray fields with free electrons.Comment: 22 pages, 6 figure

    Room Temperature CO Detection by Hybrid Porphyrin-ZnO Nanoparticles

    Get PDF
    AbstractPorphyrins are the natural candidates to the detection of carbon monoxide however the physical properties of solid-state layers of porphyrins limit their use as gas sensors mainly with mass and optical transducers. Recently we shown that the photonic properties of porphyrins, brilliantly exploited in organic solar cells, can lead to a new class of photo-activated sensors made by porphyrins coated metal oxides. Here we investigate the sensitivity to carbon monoxide of resistive sensors made by zinc oxide nanoparticles coated by a porphyrin layer. Sensors were prepared following two different routes and tested, at room temperature and in various light conditions, to CO and few volatile compounds. Results show a significant sensitivity and selectivity to CO

    Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscopy

    Get PDF
    We demonstrate that light-induced heat pulses of different duration and energy can write skyrmions in a broad range of temperatures and magnetic field in FeGe. Using a combination of camera-rate and pump-probe cryo-Lorentz Transmission Electron Microscopy, we directly resolve the spatio-temporal evolution of the magnetization ensuing optical excitation. The skyrmion lattice was found to maintain its structural properties during the laser-induced demagnetization, and its recovery to the initial state happened in the sub-{\mu}s to {\mu}s range, depending on the cooling rate of the system

    Scientific teaching targeting faculty from diverse institutions

    Get PDF
    We offered four annual professional development workshops called STAR (for Scientific Teaching, Assessment, and Resources) modeled after the National Academies Summer Institute (SI) on Undergraduate Education in Biology. In contrast to the SI focus on training faculty from research universities, STAR\u27s target was faculty from community colleges, 2-yr campuses, and public and private research universities. Because of the importance of community colleges and 2-yr institutions as entries to higher education, we wanted to determine whether the SI model can be successfully extended to this broader range of institutions. We surveyed the four cohorts; 47 STAR alumni responded to the online survey. The responses were separated into two groups based on the Carnegie undergraduate instructional program categories, faculty from seven associate\u27s and associate\u27s-dominant institutions (23) and faculty from nine institutions with primarily 4-yr degree programs (24). Both groups expressed the opinion that STAR had a positive impact on teaching, student learning, and engagement. The two groups reported using techniques of formative assessment and active learning with similar frequency. The mix of faculty from diverse institutions was viewed as enhancing the workshop experience. The present analysis indicates that the SI model for training faculty in scientific teaching can successfully be extended to a broad range of higher education institutions. © 2013 C. S. Gregg et al
    • …
    corecore